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Algebra I

Chapter 1. Basic Facts from Set Theory

1.1 Glossary of abbreviations.
Below we list some standard math symbols that will be used as shorthand abbreviations
throughout this course.

• ∀ means “for all; for every”

• ∃ means “there exists (at least one)”

• ∃! means “there exists exactly one”

• s.t. means “such that”

• =⇒ means “implies”

• ⇐⇒ means “if and only if”

• x ∈ A means “the point x belongs to a set A;” x /∈ A means “x is not in A”

• N denotes the set of natural numbers (counting numbers) 1, 2, 3, · · ·

• Z denotes the set of all integers (positive, negative or zero)

• Q denotes the set of rational numbers

• R denotes the set of real numbers

• C denotes the set of complex numbers

• {x ∈ A : P (x)} If A is a set, this denotes the subset of elements x in A such that
statement P (x) is true.

As examples of the last notation for specifying subsets:

{x ∈ R : x2 + 1 ≥ 2} = (−∞,−1] ∪ [1,∞)

{x ∈ R : x2 + 1 = 0} = ∅
{z ∈ C : z2 + 1 = 0} = {+i,−i} where i =

√
−1

1.2 Basic facts from set theory.
Next we review the basic definitions and notations of set theory, which will be used throughout
our discussions of algebra.

• ∅ denotes the empty set, the set with nothing in it

• x ∈ A means that the point x belongs to a set A, or that x is an element of A.

• A ⊆ B means A is a subset of B – i.e. any element of A also belongs to B (in symbolic
notation: x ∈ A⇒ x ∈ B). The symbols A ⊆ B and B ⊇ A are used interchangeably.

• A = B means the sets A and B contain exactly the same points. This statement is
equivalent to saying: A ⊆ B and B ⊆ A.
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• If a set consists of just one point p it is called a singleton set, denoted {p}. (Logically
speaking, the “point p” is not the same thing as “the set {p} whose only element is p,”
which is why we need a distinctive notation for singletons.)

• A ∩B indicates the intersection of two sets. An element x is in A ∩ B ⇔ x ∈ A and

x ∈ B. Notice that A ∩B = B ∩A.

• A∪B indicates the union of two sets. An element x lies in A∪B ⇔ either x ∈ A or

x ∈ B (or both). Notice that A ∪B = B ∪A.

see Figure 1.1. Intersections and unions of several sets A1, . . . , An are indicated by writing

n
⋂

i=1

Ai = A1 ∩ . . . ∩An This is the set {x : x ∈ Ai for every i}

n
⋃

i=1

Ai = A1 ∪ . . . ∪An This is the set {x : ∃ some i such that x ∈ Ai}

However, this notation is not practical when we wish to discuss unions or intersections of huge

collections of sets. To handle those we use the following notation: Let I be a set of indices and
suppose that we have assigned a set Aα to each index α ∈ I. Then the intersection and union
of the sets in this collection are denoted

⋂

α∈I

Aα a point x is in this intersection if and only if x lies in Aα for every index
α ∈ I.

⋃

α∈I

Aα a point x is in this union of sets if and only if there is at least one index
α ∈ I such that x lies in Aα.

In the following exercises we ask you to prove some basic facts governing unions, intersections,
and complements. Drawing pictures will help.

Proofs in set theory often ask you to verify that two sets A and B, which might be defined
in very different ways, are in fact the same. To prove A = B you need to show both A ⊆ B
and B ⊆ A. This is equivalent to showing that both of the following statements are true:

1. x ∈ A =⇒ x ∈ B (so A ⊆ B)

2. x ∈ B =⇒ x ∈ A (so B ⊆ A)

This breaks the task into two simpler pieces, which is to your advantage. Beware: statements
1. and 2. may sound the same, but in practice their proofs may be quite different! �

∗1.2.1 Exercise. Consider the subsets of R defined as follows: An is the interval (0, 1

n ) for all
n ∈ N. Show that

(a)

∞
⋂

n=1

An = ∅ (b)

∞
⋃

n=1

An = (0, 1) �

Hint: In (a), use the Archimedean Property of the integers in the real number system: For every
x ∈ R there exists an integer n ∈ N such that n > x.

1.2.2 Exercise. Verify the following laws governing unions and intersections.

(A ∩B) ∩ C = A ∩ (B ∩ C), (associative law)

(A ∪B) ∪ C = A ∪ (B ∪ C), (associative law)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩C) (distributive law)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪C) (distributive law)

A ∪B = B ∪A (commutative law)

A ∩B = B ∩A (commutative law) �
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Figure 1.1 The shaded regions represent the basic set operations A ∪ B, A ∩ B, A ∼ B,
and Ac Arguments based on such pictures (Venn Diagrams) are not valid proofs, but they
can be very helpful in guiding your intution toward a correct proof.

Continuing with our list of set theory notations, we define

• A ∼ B is the difference set {x : x ∈ A and x /∈ B}. Note carefully that A ∼ B need
not be the same as B ∼ A. (Think up an example!)

• Ac is the complement of a set A. Here A is a subset of some larger space X and its
complement is the set Ac = {x ∈ X : x /∈ A} = X ∼ A.

Notice that A ∼ B = A ∩Bc.
The geometric meaning of the basic set theory operations A∪B,A∩B,A ∼ B,Ac is shown

in the diagrams of Figure 1.1.

∗1.2.3 Exercise. In the space X = R consider the intervals A = [2, 5) and B = (1,+∞).
Describe the sets (a) Ac, (b) Bc, (c) A ∼ B, (d) B ∼ A. �

∗1.2.4 Exercise. Prove the following statements from the definitions:

(a) A ∼ B = A ∼ (A ∩B) (b) A ∼ B = A ∩Bc

Give an example involving subsets in R such that A ∼ B 6= B ∼ A. (Draw pictures.) �

1.2.5 Exercise. Prove the DeMorgan Laws that govern the interaction between complements
and unions or intersections. Assume that all sets are subsets of some fixed space X .

(Ac)c = A

Xc = ∅ and ∅c = X

(
⋃

α∈I

Aα)
c

=
⋂

α∈I

(Aα)c (DeMorgan Law)

(
⋂

α∈I

Aα)
c

=
⋃

α∈I

(Aα)c (DeMorgan Law) �

The main point in 1.2.5 is easily remembered: taking the complement converts unions to
intersections (and vice-versa) and replaces the sets Aα with their complements (Aα)c. Note
too that A ∼ B = A ∩Bc, which means that the DeMorgan laws can be used to good effect in
computations that involve difference sets.

∗1.2.6 Exercise. If A,B,C are subsets of a space X , prove the following facts about difference
sets

(a) A ∼ (B ∪ C) = (A ∼ B) ∼ C

(b) A ∼ (B ∩ C) = (A ∼ B) ∪ (A ∼ C)
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Hint: The DeMorgan Laws might help. �

1.3 Cartesian product of sets.
We begin with the familiar Cartesian product of two sets. Things get more interesting when
we try to define the Cartesian product of several, or infinitely many, sets.

1.3.1 Definition. The Cartesian product A× B of two sets A and B is the set consisting
of all ordered pairs (a, b) with a ∈ A, b ∈ B. �

You have certainly seen this construction before.

1.3.2 Example. For A = B = R, we write R2 = R × R. Obviously R2 is the set of the
coordinates for points in a plane. Note carefully: even if the sets A and B are the same, as
happens here, the pairs (a, b) and (b, a) can be different points in the product space. �.

1.3.3 Exercise. If A = ∅, or B = ∅, explain why A×B = ∅.
The definition of the product A1 × . . .×An =

∏n
i=1

Ai of a finite number of sets is almost the
same: its elements are simply the ordered n-tuples a = (a1, . . . , an) with ai ∈ Ai. You could
even handle the Cartesian product

∏

∞

i=1
Ai of countably many sets Ai, i = 1, 2, . . . in much the

same way; its elements are the infinite sequences a = (a1, a2, . . .) with ith entry ai ∈ Ai. The
notation becomes more subtle when we try to define the Cartesian product for a collection of
sets {Aα : α ∈ I} associated with a huge index set I. (For example, we might have a set Aα
assigned to every real number α > 0.)

1.3.4 Definition. If I is any index set and there exists a set Aα assigned to each index α ∈ I,
the Cartesian product

∏

α∈I Aα is the set consisting of all indexed words (aα)α∈I , where
aα ∈ Aα These are the maps φ : I → ⋃

α∈I Aα such that φ(α) ∈ Aα for every index α ∈ I. �

1.4 Mappings.

A map φ from a set X to another set Y is an operation that associates each element in X to a
single element in Y . We indicate the map by writing

φ : X → Y or φ : x 7→ φ(x) (if the sets X and Y are understood)

Unless stated otherwise, mappings φ(x) are assumed to be defined for every x ∈ X .
Not every y ∈ Y will be the image of some x ∈ X under a map φ : X → Y . The range of

a map φ is the set of image points

(1) rangeφ = φ(X) = {b ∈ Y : ∃ a ∈ X such that b = φ(a)}

More generally, for any subset S ⊆ X we define its forward image to be the following subset
of Y :

φ(S) = {b ∈ Y : ∃ a ∈ S such that b = φ(a)} = {φ(a) : a ∈ A}
1.4.1 Definition. Given a map φ : X → Y we say that φ is

(a) injective, or “one-to-one,” if a1 6= a2 =⇒ φ(a1) 6= φ(a2);

(b) surjective, or “onto,” if φ(X) = Y ;

(c) bijective if φ is both one-to-one and onto – i.e. ∀b ∈ Y, ∃! a ∈ X such that

φ(a) = b.

We say that two maps φ, ψ : X → Y are equal, written φ = ψ, if they have the same action:

φ(a) = ψ(a) for all a ∈ X.

1.4.2 Example. It is essential to be clear about what “equality of maps” means. The same map
can have quite different descriptions, and it is not always obvious whether two maps are in fact
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Figure 1.2 Graph of a map φ : X → Y .

the same. For example, taking X = Y = R, the maps φ(x) = x2 and ψ(x) = (x2 + x4)/(1 + x2)
are equal as maps because

x2 + x4

1 + x2
=
x2(1 + x2)

(1 + x2)
= x2

for all real x, even though different instructions are followed to compute the image points φ(x)
and ψ(x). Equality of maps φ, ψ : X → Y means they yield the same output y for every input
x. �

A map φ : X → Y can also be described by its graph Γ(φ), which is a subset of the Cartesian
product set X × Y :

(2) Γ(φ) = {(x, y) ∈ X × Y : y = φ(x)} = {(x, φ(x)) : x ∈ X}

As shown in Figure 1.1, each x ∈ X determines a “vertical fiber”

(x) × Y = {(x, y) : y ∈ Y } = { all points (a, b) ∈ X × Y such that a = x}

in the Cartesian product. This fiber intersects the graph in exactly one point: Γ(φ)∩((x)×Y ) =
{(x, b)}. Reading off the second coordinate b of this intersection point we get the value b = φ(x)
when φ is applied to the base point x. Hence the output of φ for any input x can be determined
geometrically from the graph, as in Figure 1.2(b). Thus the map can be reconstructed if we
know the graph, and vice versa; the map φ and its graph Γ(φ) encode the same information.

1.4.3 Exercise (Projection Maps). A Cartesian product X = A1 × . . .× An is associated
with various natural projection maps πj : X → Aj , defined by

(3) πj(a1, . . . , an) = aj jth component of the n-tuple a = (a1, . . . , an)

These projections play a major role in several-variable Calculus.

(a) If S is a subset of a Cartesian product set X × Y , what properties
must S have relative to the projections π

X
, π

Y
for S to be the graph

of some map φ : X → Y ?

(b) What properties must S have to be the graph of a surjective map?
Of an injective map? Of a bijective map? �

∗1.4.4 Exercise. Consider a composite φ ◦ ψ(x) = φ(ψ(x)) of two maps X
ψ−→ Y

φ−→ Z.
If the maps φ and ψ are injective/surjective/bijective, what can you say about φ ◦ ψ? Write
I =(injective), S =(surjective), B =(bijective) in the appropriate boxes of the following diagram
if the property is always true; write x if φ ◦ ψ does not always have one of these properties.
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map φ
I S B

I

map ψ S

B

∗1.4.5 Exercise. The standard model for the 2-dimensional sphere S2 is the subset

S2 = {x = (x1, x2, x3) ∈ R3 : x2

1 + x2

2 + x2

3 = 1}

in the Cartesian product space R3 = R × R × R.

(a) Let J : S2 → S2 be the inversion map J(x1, x2, x3) = (−x1,−x2,−x3). Is
this map one-to-one? Onto? A bijection? If J is invertible is there an explicit
formula for the inverse J−1?

(b) Consider the projection map p(x1, x2, x3) = (x1, x2) from R3 into R2 and
its restriction q = p|S2 to the unit sphere. What is the range of the map
q : S2 → R2? Is this map one-to-one? �

1.4.6 Exercise. Consider the map

φ(t) = (cos(t), sin(t)) for t ∈ R

from R into the unit circle S1 = {(x, y) : x2 +y2 = 1} in R2. Show that φ : R → S1 is surjective,
and that φ(t1) = φ(t2) ⇔ t2 − t1 is an integer multiple of 2π.
Note: The map is periodic, with φ(t+ 2πk) = φ(t) for all integers k. �

Inverse Maps.

The identity map id
X

: X → X on a space sends each point p ∈ X to itself. When a map
φ : X → Y is a bijection we may reverse its direction to get the inverse map φ−1 : Y → X ,
which has the properties φ−1 ◦ φ = id

X
and φ ◦ φ−1 = id

Y
, so that

φ−1(φ(a)) = a for all a ∈ X φ(φ−1(b)) = b, for all b ∈ Y .

In other words, each map φ and φ−1 undoes the action of the other. In an abstract setting, the
inverse is given by the following recipe

φ−1(b) = the unique element a ∈ X such that φ(a) = b ,

which makes sense precisely because φ is a bijection. Of course, when φ is given by some formula
or algorithm, one would like to find a similar formula for the action of φ−1. That is not always
an easy task.

∗1.4.7 Exercise. Consider the map f : R → R given by the formula y = f(x) = x3 + x + 1.
Use Calculus methods to verify that: (a) range f = R, (b) f is an injective map. Can you find
an explicit formula for the inverse map x = f−1(y)? �

∗1.4.7A Exercise. If f : X → Y is an arbitrary map, is it always true that

f(Ac) = (f(A))
c

I.e. is the forward image of the complement in X always equal to the complement of the image
f(A) in Y ? Prove or provide a counterexample. �

∗1.4.8 Exercise. For φ : X → Y and A,B ⊆ X , show that the forward map has the properties:
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Figure 1.3 In (a), several points in X can map to the same point p ∈ Y under a map
φ : X → Y , so the pullback φ−1{p} of a single point may contain several points. This
pullback is empty φ−1{p} = ∅ if p lies outside the range of φ. In (b) we show the pullback
φ−1(A) of a set A ⊆ Y . Only the part of A in range(φ) contributes to the pullback;
φ−1(A) = ∅ if A lies entirely outside the range of φ.

(a) φ(A ∪B) = φ(A) ∪ φ(B) – i.e. the forward map preserves unions of sets.

(b) Produce a counterexample showing that φ(A∩B) = φ(A)∩φ(B) is not always
true. The forward map does not always preserve intersections of sets.

(c) Show that the forward map does have the property φ(A ∩B) = φ(A) ∩ φ(B)
if we further assume that φ is one-to-one.

Hint: In (b) take a look at the map f : R → R given by f(x) = x2. �

If φ : X → Y is not a bijection, there is no inverse map φ−1 : Y → X . Nevertheless it is
possible – and useful – to define the inverse image or pullback φ−1(S) of a set S ⊆ Y .

1.4.9 Definition. Given any map φ : X → Y the inverse image (or pullback) φ−1(A) of a

set A ⊆ Y is defined to be

(4) φ−1(A) = {x ∈ X : φ(x) ∈ A}

Put another way, φ−1(A) consists of all pre-images in X of points lying in A. �

Note that φ−1(∅) = ∅ since no x ∈ X can satisfy φ(x) ∈ ∅; we also have φ−1(Y ) = X . Next
observe that φ−1(S) can be empty even if S is not. In fact,

φ−1(S) = ∅ ⇔ S is disjoint from the range of φ.

Furthermore if S is a singleton, consisting of the single point p ∈ Y , then φ−1(S) = φ−1(p)
need not be a single point in X . In fact φ−1(p) is the set of all preimages of p in X , and there
may be several if φ is not one-to-one.

The geometric meaning of “pullback” φ−1(A) of a set is illustrated in Figure 1.3.

*1.4.10 Exercise. Taking X = Y = R let f : R → R be the map f(x) = x2. Compute the
following inverse image sets φ−1(S) for:

(a) S = [−1, 1] (b) S = [1,+∞)

(c) S = the singleton {4} (d) S = [−10,−4] �

1.4.11 Exercise. Show that the process of taking inverse images preserves all the basic oper-

ations on sets. For a map φ : X → Y and A,B,C, . . . subsets of Y , show that:

(a) φ−1(∅) = ∅
(b) φ−1(A ∩B) = φ−1(A) ∩ φ−1(B)
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(c) φ−1(A ∪B) = φ−1(A) ∪ φ−1(B)

(d) φ−1(Y ∼ A) = X ∼ φ−1(A) for A ⊆ Y

(e) φ−1(A ∼ B) = φ−1(A) ∼ φ−1(B) for A,B ⊆ Y . �

To illustrate how to put together a proof involving pullbacks of sets we prove part (b) of 1.4.11
below as a guide. You should attempt the other parts.

Proof (1.4.11(b)): We shall prove (⊇) and (⊆) separately (usually a good idea).

Proof (⊆): Consider a typical x ∈ φ−1(A ∩ B), which means the forward image
φ(x) lies in A ∩B. Then

φ(x) ∈ A ∩B ⇒







φ(x) ∈ A
and

φ(x) ∈ B
⇒







x ∈ φ−1(A)
and

x ∈ φ−1(B)
⇒ x ∈ φ−1(A) ∩ φ−1(B)

so that φ−1(A ∩B) ⊆ φ−1(A) ∩ φ−1(B)

Proof (⊇): Now we have x ∈ φ−1(A) ∩ φ−1(B), which implies that






x ∈ φ−1(A)
and

x ∈ φ−1(B)
⇒







φ(x) ∈ A
and

φ(x) ∈ B
⇒ φ(x) ∈ A ∩B ⇒ x ∈ φ−1(A ∩B)

so that φ−1(A) ∩ φ−1(B) ⊆ φ−1(A ∩B)

Putting the two parts together we get φ−1(A ∩B) = φ−1(A) ∩ φ−1(B). �

∗1.4.12 Exercise. For X = N × N, Y = N, define φ : X → Y as φ (x, y) = x + y. Find
the inverse image of φ−1(5) of the singleton set {5}. If η : X → Y is the product operation
η(x, y) = xy, find η−1(4). �

1.5 Equivalence Relations in a Set.

If X is a set, a relation between points in X is defined by specifying some subset R in the
Cartesian product X×X . Once R is given we say that “a is related to b,” indicated by writing
a

R
∼ b (or simply a ∼ b), if the pair (a, b) lies in R. This is an extremely general concept and

there many kinds of relations, most of them uninteresting. We will be concerned with just one
special kind: equivalence relations, also known as RST relations.

1.5.1 Definition. A relation R in a set X is called an RST relation, or equivalence
relation, if it has the following properties

(i) x ∼ x for all x ∈ X (the relation is reflexive)

(ii) x ∼ y ⇒ y ∼ x for all x, y ∈ X (the relation is symmetric)

(iii) x ∼ y and y ∼ z ⇒ x ∼ z (the relation is transitive)

We say that “x is equivalent to y” if x
R
∼ y. The equivalence class of a point p ∈ X is the

set [p]
R

= {x ∈ X : x
R
∼ p}.

1.5.2 Exercise. Show that the following relations are all rst relations.

(a) X arbitrary and x ∼ y ⇔ x = y. The corresponding subset R ⊆ X ×X is
the diagonal, R = {(x, x) : x ∈ X}. This is the trivial relation in X .

(b) X arbitrary and x ∼ y for all pairs (x, y). Here the subset R is the entire
Cartesian productX×X , and every point inX is related to every other point.
This is not a very interesting relation, but it does satisfy the definition of
rst relation.
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(c) X = Z and x ∼ y ⇔ y − x is a multiple of 5. This relation is described by
saying “x is congruent to y (mod 5)”.

(d) X = R2 and x ∼ y ⇔ x and y lie on the same horizontal line in the plane.
If x = (x1, x2) and y = (y1, y2) this means x2 = y2.

(e) X = R2 and x ∼ y ⇔ there exists a rotation Rθ, around the origin by some
angle θ, such that y = Rθ(x). Obviously, x is equivalent to y under this
relation if and only if they have the same radial distance from the origin
0 = (0, 0).

There are many other examples. �

∗1.5.2A Example (Level Sets for Functions). If f : X → R is a scalar valued function on
a space X the level set

Lc(f) = {x ∈ X : f(x) = c} (c ∈ R fixed)

is the set of points where f takes on some particular value c. The level sets are the equivalence
classes for the relation

x
R
∼ x′ ⇔ f(x′) = f(x)

which is easily see to be an RST equivalence relation. For example if f : R2 → R the level
curves Lc are the places where the surface z = f(x, y) has constant height above or below the
x, y-plane. The resulting pattern of curves should be familiar to you if you have ever read a
“contour map” while hiking cross-country.

Other examples of level sets can be more abstract. For instance if X = M(3,R) is the
space of 3 × 3 matrices with real entries, it is well known that a matrix A acts linearly on R3

transforming any rectangular block R to a region A(R), a paralellopiped, whose volume is

Vol(A(R)) = | det(A)|·Vol(R)

where det(A) is the determinant of the matrix. A level set Lc(f) for the function f(A) =
| det(A)| is the set of matrices that scale volumes by the same factor c. The particular set with
c = 0 is the set L0(f) = {A : det A = 0} of singular (noninvertible) matrices, which all squash
rectangular blocks B ⊆ R3 into image sets A(R) having zero volume. As above, these level
sets are the equivalence classes [A] for the RST relation between matrices A

R
∼ B ⇔ det(A) =

det(B). �

∗1.5.3 Exercise. Verify that the examples above are all rst relations. Explain why the
relation

x ∼ y ⇔ x < y

is not an rst relation on X = R. What subset R ⊆ R × R corresponds to this relation? �

Every rst relation corresponds to a partition of the underlying set X into disjoint subsets that
fill X .

1.5.4 Definition (Equivalence Classes). Let R be an equivalence relation on X. Given a

point a point p in X we define its equivalence class to be the set

(5) [p] = {y ∈ X : y
R
∼ p}

Since p ∈ [p], the equivalence classes fill X. The main properties of these classes are listed next.

1.5.5 Lemma Let R be an equivalence relation on X. Its equivalence classes have the following

properties.

(6)

(a) If C = [p] is an equivalence class and p′ ∈ [p] then [p′] = [p].

(b) If C1 = [p1] and C2 = [p2] are two equivalence classes in X, then either

C1 = C2 (the sets are identical) or C1 ∩ C2 = ∅ (the sets are disjoint).
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Consequently the distinct equivalence classes partition X as a union of disjoint sets, in which

two points are equivalent if and only if they lie in the same subset of the partition.

Proof: For (a): If p′ ∈ [p] we must prove that [p] ⊆ [p′] and [p] ⊇ [p′]. If p′ ∈ [p] then p′ ∼ p
(and p ∼ p′), therefore for every x ∈ [p] we have x ∼ p ∼ p′, and by transitivity we get x ∼ p′.
Thus

x ∈ [p] ⇒ x ∈ [p′] so that [p] ⊆ [p′]

For the reverse inclusion suppose p′ ∈ [p] and consider any point y ∈ [p′]. Then p′ ∼ p and
y ∼ p′ by definition of equivalence class, hence y ∼ p′ ∼ p and then y ∼ p by transitivity. Thus

y ∈ [p′] ⇒ y ∈ [p] so that [p′] ⊆ [p]

We conclude that [p′] = [p] for any point p′ ∈ [p].
For (b), suppose C1 and C2 have a common point, say q. Then p1 ∼ q, p2 ∼ q and hence

p1 ∼ p2 by symmetry and transitivity. Thus p2 ∈ [p1] and [p2] = [p1] by (a). If there is no
common point, C1 and C2 are disjoint. �

In Example 1.5.2(d) above, the equivalence class of a point p ∈ R2 is the entire horizontal line
L passing through p. Obviously, the plane is a disjoint union of the distinct horizontal lines it
contains. In 1.5.2(e) not all equivalence classes look the same. If we write ‖x‖ = (x2

1 + x2
2)

1/2

for the radial distance from x = (x1, x2) to the origin 0 = (0, 0), there is one equivalence class
for each value r ≥ 0. The classes are of two types:

For r > 0 Cr = {x : ‖x‖ = r} (circle of radius r)

For r = 0 C0 = {x : ‖x‖ = 0} = {0} (the single point 0) �

Given an equivalence class C = [p] we refer to p as a representative of the class. Of course,
according to (6a) every other point in C is also a representative.

We have seen how to go from an rst relation R to a partition PR of X into disjoint sets
(the equivalence classes for R). One can also go in the reverse direction. Suppose X is a set
and P = {Xα : α ∈ I} is a collection of nonempty subsets (indexed by a set of labels I) that
partition X , so that

X =
⋃

α∈I

Xα and Xα ∩Xβ = ∅ if α 6= β in I.

Then we can define a relation R on X such that the partition PR is the same as the partition
P we started with. In fact, this is what happens if we define

(7) x
R
∼ y ⇔ x and y lie in the same subset Xα of the partition P

1.5.6 Exercise. Verify the above remarks. In particular, verify that (7) does define an rst

relation on X , and that PR = P . �

*1.5.7 Exercise. Determine the sets in the partition PR for each of the rst relation in
Example 1.5.2. �

1.5.8 Definition (The Quotient Space X/R). Given a set X and an rst relation R on it,

the associated quotient space X/R is defined to be the set whose elements are the equivalence

classes [x]
R

in X.

Note carefully: points in the quotient space X/R are subsets of the original space X . This
is clearly illustrated by example 1.5.2(d) where X/R was the collection of all horizontal lines
in R2, each line L ⊆ R2 being regarded as a single point in the quotient space X/R. Having
defined X/R, there is a natural quotient map π : X → X/R defined by taking

(8) π(x) = [x]
R

= the equivalence class of x.
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Quotient spaces, and their associated quotient maps, will pop up frequently in algebra, analysis,
and geometry. We now examine some fundamental examples of the interplay between algebraic
structure and quotient spaces. We begin with the simplest possible example of a congruence
relation in Z, but will go on to show that a similar relation can be defined for each n ∈ N.

1.5.9 Example: Congruence (mod 2). In X = Z we define the parity relation – also known
as “congruence of integers (mod 2)” – as follows

x ∼ y ⇔ y − x is a multiple of 2

⇔ there is some m ∈ Z such that y = x+ 2m

⇔ y ∈ x+ 2Z

where 2Z = {2k : k ∈ Z} and x+2Z = {x+2k : k ∈ Z}. Obviously, x ∼ y ⇔ x and y have the
same parity – either both even or both odd. Officially, parity of an integer n ∈ Z is defined to
be (−1)n, which can only take on the values +1 (even parity) or −1 (odd parity). Notice that
x ∼ y ⇔ (−1)x = (−1)y ⇔ x and y have the same parity. Also note that by this definition 0
is even and 1 is odd. The equivalence class of a point x ∈ Z is the subset [x] = x + 2Z in Z.
There are just two equivalence classes because every x is equivalent either to 0 (x even) or to
1 (x odd). The quotient space is denoted by X/R = Z/(2Z) = Z2, and consists of the classes
[0] = 2Z and [1] = 1 + 2Z. Points in Z2 correspond to the possible parities of elements in Z.
�

The remarkable thing about the quotient space Z2 is that it inherits a natural algebraic structure
from Z. The appropriate (+) and (·) operations are defined as follows:

[0] + [0] = [0] [0] + [1] = [1] + [0] = [1] [1] + [1] = [2] = [0]

[0] · [0] = [0] [0] · [1] = [1] · [0] = [0] [1] · [1] = [1]

The resulting “algebraic quotient structure” (Z2,+, · ) is a miniature number system in its own
right, satisfying many of the familiar rules of arithmetic.

1.5.10 Definition (Congruence mod n). Fix an integer n > 1 and define the following rst

relation in X = Z:

a ≡ b (mod n) ⇔ b− a is a multiple of n

⇔ b = a+ nk for some k ∈ Z

⇔ b ∈ a+ nZ = {a+ nk : k ∈ Z}(9)

⇔ b+ nZ = a+ nZ

It is easily seen that this defines a relation that is reflexive, symmetric, and transitive. In plain

English, the relation a ≡ b (mod n) is read as: “a is congruent to b modulo the integer
n,” and for this reason the equivalence classes

[a] = {b ∈ Z : b ≡ a} = {a+ kn : k ∈ Z} = a+ nZ

are referred to as the (mod n) congruence classes in Z. The class [a] is an evenly spaced

lattice of points in Z, centered at a with distance n between successive points.

The quotient space X/R is denoted by Zn; it consists of the distinct congruence classes in

Z. The associated quotient map π = πn : Z → Zn is given by π : a→ [a] = a+ nZ.

*1.5.11 Exercise. For n > 1 define a ≡ b (mod n) to mean

b− a is an integer multiple of n

Verify that this is an RST relation on X = Z. �
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*1.5.12 Exercise. Give a careful self-contained proof that

a ≡ b (mod n) ⇔ a+ nZ = b + nZ as sets in Z. �

Obviously there are exactly n distinct equivalence classes in Zn, namely

[0] = 0 + nZ = nZ [1] = 1 + nZ . . . [n− 1] = (n− 1) + nZ ,

because if we start with some k ∈ Z we can add or subtract whole multiples of n to arrive at
a unique “normalized” class representative k′ such that 0 ≤ k′ < n. Here we have described
the classes in Zn by choosing particular class representatives. Of course we could also write
[n− 1] = [−1], [n− 2] = [−2], etc., and sometimes it is useful to do so.

*1.5.13 Exercise. If 0 ≤ k < ℓ < n, explain why the (mod n) congruence classes [k] and [ℓ]
are disjoint sets in Z, and are distinct points [k] 6= [ℓ] in the quotient space Zn. �

We now show that the operations (+) and (·) in Z induce corresponding operations in
the quotient space Zn of congruence classes, and that the induced operations inherit many
properties from Z. For the moment we will denote these operations in Zn by ⊕ and ⊙, but will
soon revert to writing them as (+) and (·) when there is no chance of confusing them with the
original operations in Z.

1.5.14 Theorem (Algebraic Structure in the Quotient Space Zn). Fix an integer n > 1
Let Zn be the quotient space of (mod n) congruence classes and let π : Z → Zn be the quotient

map. In Zn define operations

(10) [a] ⊕ [b] = [a+ b] and [a] ⊙ [b] = [ab]

for a, b ∈ Z. These operations are well-defined despite the fact that class representatives are

used to define them. Furthermore,

(a) The element [0] is the zero element with respect to the ⊕ operation: [0]⊕x = x
for all x ∈ Zn.

(b) The element [1] is the multiplicative identity element with respect to the ⊙
operation: [1] ⊙ x = x for all x ∈ Zn.

Proof: In (10) we defined the operation ⊕ by picking class representatives and applying the
following procedure

• Given classes A,B pick representatives a, b such that A = [a] and B = [b].

• Add the representatives to get a+ b in Z

• Form the equivalence class [a+ b] = (a+ b) + nZ of a+ b in Zn.

The result is, by definition, the sum of classes A⊕B. Similarly for products A⊙B.
We must show that this definition makes sense – i.e. if we take different representatives

a′, b′ in place of a, b the class [a′]⊕ [b′] = [a′ +b′] is the same as [a]⊕ [b] = [a+b]. Since elements
x, y determine the same equivalence class ⇔ x ∼ y, our goal is achieved if we can prove:

Claim: If a′ ∼ a and b′ ∼ b then a′ + b′ ∼ a+ b and a′b′ ∼ ab

So, suppose a′ ≡ a and b′ ≡ b (mod n). By definition of congruence, there must be integers k, ℓ
such that a′ = a+ kn and b′ = b+ ℓn. Hence we have

a′ + b′ = (a+ b) + (k + ℓ)n

≡ a+ b (mod n)

a′ · b′ = a · b+ bkn+ aℓn+ kℓn2

= a · b+ (integer) · n
≡ a · b (mod n)
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Consistency of the definition (10) is proved. The other identities

[a] ⊕ [0] = [0] ⊕ [a] = [a] and [a] ⊙ [1] = [1] ⊙ [a] = [a]

follow immediately from (10). �

These operations in Zn generalize the familiar notion of “clock arithmetic.” When n = 12,
adding m hours and n on a clock is exactly like adding m and n (mod 12): a result like
6 + 8 ≡ 2 makes perfect sense on a clock, even though 6 + 8 = 14 in the system of integers
Z. Remember that the next time someone asks you why to explain why 2 + 2 = 4. It isn’t in
some number systems, and if we lived on a planet with a 6-hour day (3 hours from midnight to
noon) we might respond by saying “That’s silly! Everyone knows 2 + 2 = 1.”

*1.5.15 Exercise. In the system Zn verify that

(a) If 0 ≤ a < n, the element [a] has the property [a] + [k] = [k] for all [k] ∈ Zn
if and only if a = 0.

(b) If 0 ≤ a < n, the element [a] has the property [a] · [k] = [k] for all [k] ∈ Zn if
and only if a = 1. �

We say that [a] ∈ Zn has a multiplicative inverse if there exists some [k] ∈ Zn such that
[k] · [a] = [a] · [k] = [1]. If it exists this inverse, or “reciprocal,” is denoted by [a]−1. The
invertible elements in Zn are called the units of this system, and the set of units is indicated by
the symbol Un. The zero element [0] cannot be a unit, and the set of units always contains the
elements [1] and −[1] = [−1] = [n− 1]; it is possible that these are the only units, as happens
in (Z4,+, · ). Notice that when n = 2 the multiplicative identity element is its own negative,
[1] = −[1] = [−1] because [1] + [1] = [0]; thus [1] is the only unit in Z2 (as well being as the
only nonzero element in this system). In Chapter 2 we will see that the nature of the invertible
elements in the system (Zn,+, · ) depends largely on the prime divisors of the modulus n.

∗1.5.16 Exercise. Do all nonzero elements [a] 6= [0] in Zn have multiplicative inverses in Zn?
Make multiplication tables for the systems Z4 and Z7 and find out. �

∗1.5.17 Exercise. In Zn is it possible to have two nonzero elements [a], [b] 6= [0] such that
[a] · [b] = [0]? Investigate, trying n = 4 and n = 5. �

1.5.18 Proposition. If n > 1 is an integer prove that every nonzero element [a] 6= [0] in Zn
has a multiplicative inverse if and only if n is a prime. �

1.5.19 Example (The Rational Numbers Q). Let F be the set of all “fraction symbols”
p
q , with p, q ∈ Z and q 6= 0. Into this system we introduce a relation (∼) by declaring that

(11)
p′

q′
∼ p

q
⇔ p′q = pq′ in Z

We leave it as an exercise to check that this is an RST relation on the set of symbols F . This
equivalence relation should look familiar. For instance, it says that 1

2
∼ 2

4
∼ . . . ∼ 24

48
∼ . . . or

5

8
∼ 15

24
∼ 10

16
. In fact one familiar rule for “reducing fractions”

mp

mq
∼ p

q
for all m 6= 0 in Z

is an immediate consequence of (11). However, there is more to equivalence than this because

there are equivalent symbols p′

q′ ∼
p
q such that

p′

q′
is not of the form

mp

mq
for any integer m 6= 0

and vice-versa. See Exercise 1.5.21.
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Generations of grade-school children have been dismayed by the fact that many different
symbols correspond to the same rational number. The following geometric interpretation is
one way to understand equivalence of fraction symbols. When p, q > 0 the symbol p/q encodes
instructions for locating a unique point on the number line R.

Geometric Interpretation of Fractions p/q. Take the unit interval [0, 1] =
{x ∈ R : 0 ≤ x ≤ 1}, subdivide it into q segments of equal length, then join together

p such pieces moving to the right of the origin at x = 0.

There are similar interpretations for arbitrary fractions, except that the fraction 0/q is always
assigned to the origin, and we might have to move to the left of the origin instead of to the
right if p and q have opposite signs.

Geometric Interpretation of Equivalence. Two fractions p′/q′, p/q are

equivalent in the sense that p′

q′ ∼ p
q as defined in (11) if they determine the same

point on the number line.

It is also evident from this geometric criterion that equivalence is an RST relation on the set
of fraction symbols F = {p/q : p, q ∈ Z, q 6= 0}. Consequently F splits into disjoint equivalence

classes

[p
q
] = {p

′

q′
:
p′

q′
∼ p

q
} = {p

′

q′
: pq′ = p′q}

It is these equivalence classes, and not the fraction symbols p/q themselves, that correspond to
points on the number line; the resulting set of points in R is the system of rational numbers Q.

You are all used to thinking of the rational numbers as an algebraic system, equipped with
operations of addition (+) and multiplication (·). But most of you have been trained to think
of these as operations on fraction symbols, taking

(12)
p

q
+
r

s
=
ps+ qr

qs
and

p

q
· r
s

=
pr

qs

You have also been trained to sweep under the rug all thoughts about the distinction between
a rational number and the (many) symbols p

q that represent it. This sort of sloppiness is what
causes confusion for grade school students learning arithmetic, and is not acceptable in higher
level mathematics. Having defined rational numbers as equivalence classes, we must describe
the algebraic operations in Q as operations on equivalence classes. The preceding example Zn
suggests how this is to be done: given two classes, take any representatives p

q and r
s and define

(13) [p
q
] + [r

s
] = [ps+ qr

qs
] and [p

q
] · [r

s
] = [pr

qs
]

Using the definition of fraction equivalence (11) one can verify that the resulting equivalence
classes on the right don’t depend on which representatives p

q and r
s of the original classes we

chose, so the operations (13) on classes are well-defined in spite of the fact that we used class
representatives to determine the outcome. (Details are outlined in Exercise 1.5.22 below.) �

*1.5.20 Exercise. Prove that the relation p
q ∼ p′

q′ between fraction symbols is an RST relation.

∗1.5.21 Exercise. It is immediate from (11) that a fraction p
q is equivalent to any fraction of

the form mp
mq for m 6= 0 in Z. Find an example of two fraction symbols such that

p′

q′
∼ p

q
but

p′

q′
is not of the form

mp

mq
for any integer m 6= 0

Hint: What fraction symbols are equivalent to p

q
=

1

3
? Are they all related to each other in the

above manner? �
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∗1.5.22 Exercise. To prove that the operations on equivalence classes are well defined (inde-
pendent of the choice of representatives used to determine the outcome) we need to verify the

following statements: If p′

q′ ∼
p
q and r′

s′ ∼ r
s then

p′

q′
+
r′

s′
=
p′s′ + q′r′

q′s′
is equivalent to

p

q
+
r

s
=
ps+ qr

qs

p′

q′
· r

′

s′
=
p′r′

q′s′
is equivalent to

p

q
· r
s

=
pr

qs

Check that both statements are true using the definition (11) of fraction equivalence.
Hint: The result for products of fractions is much easier than that for sums; try it first.
Both results must be proved by repeated use of the given identities p′q = qp′ and r′s = rs′

(equivalence of fraction symbols). �

It is easy to verify that the elements 0 = [0
1
] and 1 = [1

1
] in Q have the special properties

0 + [p
q
] = [p

q
] for all [p

q
] in Q

1 · [p
q
] = [p

q
] for all [p

q
] in Q

These elements are, respectively, the additive zero element and the multiplicative identity ele-

ment in (Q,+, · ) The next exercise shows that Q contains a faithful copy of the integers Z.

1.5.23 Exercise. Let ψ : Z → Q = F/(∼) be the map ψ(m) = [m
1
]. Prove that

(a) ψ is a one-to-one map of Z into Q, so ψ(Z) is a faithful copy of Z in Q.

(b) ψ intertwines the algebraic operations in Z and Q:

ψ(a+ b) = ψ(a) + ψ(b) (sum of elements in Q) = [ a

1
] + [ b

1
]

ψ(a · b) = ψ(a) · ψ(b) (product of elements in Q) = [a

1
] · [ b

1
]

for all a, b ∈ Z. �

1.5.24 Exercise. Prove that every nonzero element x = [pq ] in Q has a multiplicative inverse

x−1 = [ rs] such that x−1 · x = 1. �

This makes the system Q a “number field.” The system of integers does not have this property;
for instance the number “2” has no multiplicative inverse in Z. In view of 1.5.23 the system
of rationals is a natural “extension” Q ⊇ Z in which all nonzero elements have multiplicative
inverses (in Q). That is precisely the point of constructing the system Q.

1.5.25 Exercise. If we define a “positivity relation” [ pq ] > 0 in Q to mean that pq > 0, prove
that

(a) The relation “>” is well-defined on equivalence classes, independent of the rep-
resentative p/q ∈ F – i.e. if p/q ∼ p′/q′ then pq > 0 ⇔ p′q′ > 0 in Z.

(b) If x = [ pq ] and y = [ rs] satisfy x > 0 and y > 0 in Q prove that x + y > 0 and
x·y > 0.

As we will see in Chapter 2, this means (Q,+, · ) becomes a “commutative ordered ring” when
equipped with the “>” relation. �
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